Your Roll No.....

Sr. No. of Question Paper: 1264

D

Unique Paper Code : 2354001001

Name of the Paper : GE: Fundamentals of Calculus

Name of the Course : Common Prog. Group

Semester : I

Duration: 3 Hours Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 3. All questions are compulsory and carry equal marks.
- 3. This question paper has six questions.
- 4. Attempt any two parts from each question.
- 1. (a) (i) Establish that $\lim_{x\to 0} \frac{e^{1/x} e^{-1/x}}{e^{1/x} + e^{-1/x}}$ does not exist.
 - (ii) Examine the continuity of the function

$$g(x) = \begin{cases} -x^2 & \text{, if } x \le 0 \\ 5x - 4 & \text{, if } 0 < x \le 1 \\ 4x^2 - 3x, \text{ if } 1 < x < 2 \\ 3x + 4 & \text{, if } x \ge 2 \end{cases}$$

at x = 0,1,2 and discuss their type of discontinuities, if any.

- (b) Differentiate $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$ with respect to $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$. Also prove that if $x^y = e^{x-y}$, then $\frac{dy}{dx} = \frac{\log x}{\left(1 + \log x\right)^2}$.
- (c) Find the nth derivatives of $f(x) = e^{ax} \cos^2 bx$ and $g(x) = \sin 5x \sin 3x$.
- 2. (a) If $y = e^{m \sin^{-1} x}$, then show that $(1 x^2) y_{n+2} (2n+1) x y_{n+1} (n^2 + m^2) y_n = 0. \text{ Also find } y_n(0).$
 - (b) Let $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ and $v = \sin^{-1}\left(\frac{x^2+y^2}{x+y}\right)$. Show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0 \text{ and } x\frac{\partial V}{\partial x} + y\frac{\partial V}{\partial y} = \tan V$
 - (c) If $V = r^m$ where $r^2 = x^2 + y^2 + z^2$, then prove that $\frac{\partial^2 V}{\partial^2 x} + \frac{\partial^2 V}{\partial^2 y} + \frac{\partial^2 V}{\partial^2 z} = m(m+1)r^{m-2}.$
- 3. (a) State and prove Rolle's theorem. Verify it for the function

$$f(x) = x^3 - 6x^2 + 11x - 6$$
 in the domain [1,3].

1

(b) State Lagrange's mean value theorem. Use it to show that

that
$$\frac{x}{1+x} < \log(1+x) < x, \text{ for all } x > 0.$$

- (c) Verify Cauchy's mean value theorem for the following pair of functions:
 - (i) $f(x) = \frac{1}{x^2}$ and $g(x) = \frac{1}{x}$ in the domain [2,5].
 - (ii) $f(x) = \sin x$ and $g(x) = \cos x$ in the domain $[0, \pi/2]$.
 - (iii) $f(x) = e^x$ and $g(x) = e^{-x}$ in the domain [1,4].
- 4. (a) Find the range of x for which the series $a + ax + ax^2 + ... + ax^{n-1} + ...$ is convergent, where a is a nonzero real number. Verify whether the series $1 + \frac{3}{4} + \frac{9}{16} + \frac{27}{64} + \cdots$ is convergent or not.
 - (b) Find the Taylor's series for $f(x) = \sin x$ and $g(x) = \cos x$.
 - (c) Evaluate the following:

(i)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right).$$

(ii)
$$\lim_{x\to 0} \left(\frac{\tan^2 x - x^2}{x^2 \tan^2 x} \right).$$

- 5. (a) Determine the intervals of concavity and points of inflection of the curve $y = 3x^5 40x^3 + 3x 20$. Also use both first and second derivative tests to show that $f(x) = x^3 3x + 3$ has relative minimum at x = 1.
 - (b) Find asymptotes of the curve: $y^3 2xy^2 x^2y + 2x^3 + 2x^2 3xy + x 2y + 1 = 0.$
 - (c) Determine the intervals of concavity and points of inflection of the curve $y = e^{-x^2}$. Also, show that the points of inflection of the curve $y = -(x-3)\sqrt{(x-5)}$ lies on the line 3x = 17.
- 6. (a) Sketch a graph of $y = \frac{x}{x^2 + 4}$ and identify the locations of all asymptotes, intercepts, relative extrema and inflection points.
 - (b) Locate the critical points and identify which critical points are stationary points for the functions:
 - (i) $f(x) = 4x^4 16x^2 + 17$
 - (ii) $g(x) = 3x^4 + 12x$
 - (iii) $h(x) = 3x^{5/3} 15x^{2/3}$.
 - (c) Trace the curve $r = 2(1 + \cos\theta)$.