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l. (a) If x and y are vectors in R", then prove that [X . y]

< (IxIh AyID-

't

(7.3)
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(b) Prove that for vectors x and y in B~
() IIx YU = 1Ixl* + [iyil? if and only if x.y= 0.

(i) [x* ¥l = [IxI] + {iyll if and only if y = ¢z,

for some ¢ > 0, (3.5+4)

(c) Describe geometric interpretation of addition of
two vectors in R?. In particular, represent the
sum of the vectors a = [3,4] and b = [-2,1]

geometrically. (7.5)

(a) Find the reduced row echelon form B of the

following matrix A :

4 0 =20
A=| =2 0. 11
L 3 I -15]

Also give a sequence of row operations that

converts B back 1o A, (§.5+2)
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(b) Determine whether the vector [5,17,-20] is in

(3 1 2]
the row space of matrix | 4 o0 1|  (7.5)
| —2 & 4 =3 |

(c) Use the Gaussian elimination method to find
the complete solution set for the following

homogenebus system.
2x +y+8z=0
7x — 2y — 22z =0
3x —y — 10z =0 (7.5)

3. (a) Find the cigen values and corresponding eigen

vectors of the following matrix :

4 8 -2
6 -6 12 (3+4.5)
6 8 14

P.T.O.



(b) Define a vector space. Let 'V be a vector space,
then for every vector vin V and every real number

a, prove that
(i) a. 0 = 0.

(if) if a.v = 0 then a=0 or v=0.

(1.5+3+3)

(¢) Show that the set M__ of all real matrices of
order n x m forms a vector space under the matrix

addition and scalar multiplication. (7.5)

4. (a) Prove or disprove, if the following sets are

subspace of R*:
(i) W1 = {(a,b,0,0): a,b € R)

(i) W2 = {(a,b,a-1,0): a,b € R)
(4+3.5)
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b) Define span S X
( I of a St S, Let § be a non-cmpty

subset of S e
ol a veetor space V, then prove the

following :
(1) S < span (5).

(1) span(S) is a subspace of V.

(1.5+2.5+3.5)

(¢) Define basis of a vector space. Give an example

of a basis for the following vector spaces:

(i) P_(R)- set of all polynomials of degree at

most n.

(i) R"- set of all n tuples of real numbers.

. % m real matrices.
(iii) M- set of all n al me

(1.5+2+2+2)

o " e | -

P.T.O.



1421 6

5. (a) Define a linear transformation. If L: V — W is

-~

a linear transformation, and 0, is the zero vector

in V and Oy, is the zero vector in W, then prove

the following :
(1) L(0y) = 0.

(1)) L(—v) = -L(v) for all v e V.
(1.5+3+3)

(b) Let L: P,(x) — R3? be a linear transformation.
Find the matrix of linear transformation A of
L, with respect to the standard order basis
B = {1, x, x2, x3} of P,(x) and C = {e,, e,, e,} of

R3, where L is defined as :

L(dx® + cx® + bx + a) = [a+b, 2¢, d — a].

(7.5)
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State Dimensi O T : it f
() 1ension theorem, Further prove it for the

linear transformation

L: Py(x) = P,(x), defined as L(ax® + bx* + cx + d)

= 3ax? + 2bx + c. (2+5.5)

6. (a) For the linear transformation L: R3 — R? defined

as

a 5 1 -1)fa

Libl=l-3 0 1||b
1 -1 -1){c

Find Ker(L) and Range(L). (4+3.5)

(b) Define a one-to-0ne linear transformation. Show

that a linear transformation L : V. — W is one-to-

one if and only if Ker(L) = {0}. (2+5.5)

P.T.O.
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(¢) For the lincar transformation L
<

as. L(V) = A. v, where

1 0 3
A= 0 1 3
1 1 -1

Determine, whether L is an

not.

P RT - r? defined

isomorphism or

(7.5)

C—



