[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 4902

H

Unique Paper Code : 2352572401

Name of the Paper : Abstract Algebra

Name of the Course : B.A./B.Sc. (Programme) with

Mathematics as Non-Major/

Minor - DSC

Semester : IV

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt all questions by selecting two parts from each question.
- 3. Each part carries 7.5 marks.
- 4. Use of Calculator not allowed.
- 1. (a) State Division Algorithm. Determine 51 mod 13, 342 mod 85, 62 mod 15, (82.73) mod 7, (51+68) mod 7 and (35.24) mod 11.

- (b) Define a Group. Show that $G = \{1, -1, i, -i\}$ forms a group under complex multiplication.
- (c) Let G be a group with the property that for any x, y, z in the group, xy = zx implies y = z. Prove that G is Abelian. Also, in $GL(2, \mathbb{Z}_{13})$, find

$$\det\begin{bmatrix} 7 & 4 \\ 1 & 5 \end{bmatrix}.$$

- 2. (a) Let G be an abelian group and H and K be subgroups of G. Show that $HK = \{hk: h \in H, k \in K \text{ is a subgroup of G. Also, find the order of 7 in } \mathbb{Z}_{10} \text{ under addition modulo } 10.$
 - (b) Let a be an element in a group G of order 30. Find $< a^{26}>$, $< a^{17}>$, $< a^{18}>$ and $|a^{26}|$, $|a^{17}|$ and $|a^{18}|$.
 - (c) Find the order of each element of U(15).
- 3. (a) Let $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{bmatrix}$ and

$$\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{bmatrix}$$

Write α , β and $\alpha\beta$ as a product of disjoint cycles. Also find β^{-1} .

- (b) Construct a complete Cayley table for D_4 , the group of symmetries of a square. Is D_4 Abelian? Justify.
- (c) Find all the left cosets of {1,15} in U(32).
- 4. (a) Let $H = \{\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in \mathbb{R}, ad \neq 0 \}$. Is H a normal subgroup of $GL(2, \mathbb{R})$? Justify.
 - (b) State Lagrange's theorem for finite groups. Prove that in a finite group, the order of each element of the group divides the order of the group.
 - (c) Let G be a group of permutations. For each σ in G, define

$$sgn(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is an even permutation,} \\ -1 & \text{if } \sigma \text{ is an odd permutation.} \end{cases}$$

Prove that the function sgn is a homomorphism from G to the multiplicative group $\{-1,1\}$. What is the Kernel?

- 5. (a) (i) Describe all the subrings of the ring of integers.
 - (ii) Let a belong to a ring R. Let $S = \{x \in R \mid ax = 0\}$. Show that S is a subring of R.

- (b) Prove that a finite Integral Domain is a field. Hence, show that \mathbb{Z}_p is a field, where p is a prime number.
- (c) State and prove the subring test.

Let $R = \{ \begin{bmatrix} a & a-b \\ a-b & b \end{bmatrix} \mid a,b \in \mathbb{Z} \} \subseteq M_2(\mathbb{Z})$ where $M_2(\mathbb{Z})$ is the ring of 2×2 matrices over 2. Prove or disprove that R is a subring of $M_2(\mathbb{Z})$.

- 6. (a) Define an ideal of a ring R. State the ideal test. Hence, prove that $n\mathbb{Z}$ is an ideal of \mathbb{Z} .
 - (b) Let $f: R \to S$ be a ring homomorphism. Prove that
 - (i) f(A) is a subring of S where A is a subring of R.
 - (ii) $f^{-1}(B) = \{r \in R \mid f(r) \in B\}$ is an ideal of R where B is an ideal of S.
 - (c) Determine all the ring homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{30} .