[This question paper contains 4 printed pages.]

Your Roll No.....

H

Sr. No. of Question Paper: 4881

: 2352572401

Unique Paper Code : 2352572401

Name of the Paper : Abstract Algebra

Name of the Course : B.A./B.Sc. (Prog.) - DSC

Semester : IV

Duration: 3 Hours Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt all question by selecting two parts from each question.
- 3. Part of the questions to be attempted together.
- 4. All questions carry equal marks.
- 5. Use of Calculator not allowed.

- 1. (a) Define a group G. If the square of every element in a group G is the identity then prove that G is Abelian.
 - (b) Prove that the set R* of nonzero real numbers is a group under multiplication.
 - (c) Describe each symmetry in D_4 . Prove that D_4 is a group.
- 2. (a) Define the order of an element in a group G. Find the order of each element in the group U(10).
 - (b) Let G be an Abelian group and H, K are subgroups of G. Then prove that

 $HK = \{hk : h \in H, k \in K\}$ is a subgroup of G.

- (c) Let G be an Abelian group with identity e. Then prove that $H = \{x \in G : x^2 = e\}$ is a subgroup of G.
- 3. (a) Show that \mathbb{Z}_8 is a cyclic group under addition modulo 8. Find all its generators.
 - (b) Consider a permutation $\alpha = (1 \ 3 \ 4 \ 7)(2 \ 9 \ 8)(6 \ 9)$ (4 1 6).

- (i) Express α as a product of disjoint cycles.
- (ii) Find α^{-1}
- (iii) Find $o(\alpha)$
- (iv) Determine if α is even or odd permutation.
- (c) Define order of an element of a group. If α is an element of group G and o(a) = 40. Find $\langle a^{22} \rangle$, $\langle a^{12} \rangle$.
- 4. (a) Let H be a subgroup of G and a, $b \in G$. Prove that either aH = bH or $aH \cap bH = \emptyset$.
 - (b) Let H be a subgroup of group G. Show that the collection of all the left cosets of H in G is a group. Name the group.
 - (c) Let Φ be a homomorphism from group G to G'. Define Ker Φ . Show that $\Phi(a) = \Phi(b)$ if and only if a Ker $\Phi = b$ Ker Φ , for a, b in G.
- 5. (a) Prove that the intersection of any collection of subrings of a ring R is a subring of R.
 - (b) Show that the set $Q\sqrt{2} = \{a + b\sqrt{2} \mid a, b \in Q\}$ is a field.

- (c) Define characteristics of a ring. Show that the characteristics of an integral domain is zero or prime.
- 6. (a) State ideal test. Prove that the set $3Z = \{3n \mid n \in Z\}$ is an ideal of Z.
 - (b) Show that $\varphi: Z_4 \to Z_{10}$ given by $\varphi(x) = 5x$ is a ring homomorphism.
 - (c) Let $\Phi: R \to S$ be a ring homomorphism and B an ideal of S. Show that $\Phi^{-1}(B) = \{r \in R \mid \Phi(r) \in B\}$ is an ideal of R.