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I. (a) Define a group G. If the square of every element

in a group G is the identity then prove that G is
Abelian.

(b) Prove that the set R* of nonzero real numbers is
a group under multiplication.
(c) Describe each Symmetry in D,.

Prove that D, is a group.

(a) Define the order of an element in a group G. Find

the order of each element in the group U(10).

(b) Let G be an Abelian group and H, K are subgroups
of G. Then prove that

HK = {hk: heH, keK} is a subgroup of G.

(c) Let G be an Abelian group with identity e. Then

prove that H = {x e G: x2=¢} is a subgroup of
G.

(a) Show that Zy is a cyclic group under addition

modulo 8. Find all its generators.

(b) Consider 3 permutation o = (134 7)(298)(69)
416).
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(i) Express a as a product of disjoint cycles.

(ii) Find o'

(i1i) Find o(a)

(iv) Determine if o is even or odd permutation.
(c) Define order of an element of a group. If a is an

element of group G and o(a) = 40. Find <a**>,

<alz>,

(a) Let H be a subgroup of G and a,b € G. Prove
that either aH = bH or aH nbH = @.

(b) Let H be a subgroup of group G. Show that the
collection of all the left cosets of H in G is a

group. Name the group.

(c) Let ® be a homomorphism from group G to G'.
Define Ker ®. Show that ®(a) = ®(b) if and
only if a Ker ® = b Ker @, for a, b in G.

(a) Prove that the intersection of any collection of
subrings of a ring R is a subring of R.

(b) Show that the set Q\/5={a+b\/2|a,beQ} is a
field.
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(¢) Deline characteristics of a ring. Show that the
characteristics of an integral domain is zero or

prime.
6. (a) State ideal test. Prove that the set 3Z= {3n|n € Z}
is an ideal of Z.

(b) Show that 9 : Z, — Z,, given by ¢(x) = 5x is a
ring homomorphism.

(c) Let ®: R — S be a ring homomorphism and B an

ideal of S. Show that ®!(B) = {reR | ®(r) B}
i1s an ideal of R.
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