[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 2811

A

Unique Paper Code

62351201

Name of the Paper

: Algebra

Name of the Course

: B.A. (Prog.)

Semester

: II

Duration: 3 hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts from each question.
- 3. All questions carry equal marks.
- 1. (a) Show that the set $W = \{(a_1, a_2, a_3): a_1 2a_2 + a_3 = 0; a_1, a_2, a_3 \in R\}$ is a subspace of the vector space $R^3(R)$.
 - (b) Let $\{a, b, c\}$ be a basis of $R^3(R)$. Show that the set $\{a + b, b + c, c + a\}$ is also a basis of $R^3(R)$

- (c) Define linearly independent set of vectors. Show that the following set of vectors $\{(1,2,3),(3,-1,0)\}$ in $R^3(R)$ is linearly independent.
- (d) Let $S = \{(a, 0, 0): a \in R\}$ and $T = \{(0, b, 0): b \in R\}$ be subsets of R^3 . Show that S and T are subspaces of R^3 .
- 2. (a) Reduce the following matrix to triangular form by elementary row operations and hence find the rank:

$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & 3 & 4 \\ 5 & -1 & 6 \end{bmatrix}.$$

(b) Solve the following system of equations:

$$x + 2y + 3z = 0$$

2x + 4y + 7z = 0
3x + 6y + 10z = 0

(c) Find the eigen values of the following matrix:

$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

(d) Verify that the following matrix satisfies its characteristic equation:

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 3 \\ 2 & -1 & 1 \end{bmatrix}.$$

3. (a) If n is a positive integer, show that $(1+i\sqrt{3})^n + (1-i\sqrt{3})^n = 2^{n+1}\cos\frac{n\pi}{4}$.

- (b) Prove that $\cos 4\theta = \cos^4 \theta 6 \cos^2 \theta \sin^2 \theta + \sin^4 \theta.$
- (c) Solve the equation $z^5 + 1 = 0$.
- (d) Find the sum $\sin \theta + \sin 2\theta + \sin 3\theta + \cdots + \sin n\theta$.
- 4. (a) Solve the equation $x^3 5x^2 16x + 80 = 0$, the sum of two of the roots being zero.
 - (b) If α, β, γ be the roots of the equation $x^3 7x + 7 = 0$, find the value of $\sum \alpha^4$.
 - (c) Find the sum of the cubes of the roots of the equation $x^3 + 5x^2 6x + 3 = 0$.
 - (d) Solve the equation $2x^3 x^2 22x 24 = 0$, two of the roots being in the ratio 3: 4.
- 5. (a) Show that $H = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} : a \neq 0, a, b \in \mathbb{R} \right\}$ is a subgroup of the multiplicative group of 2 × 2 non-singular matrices over \mathbb{R} .
 - (b) Show that the set \mathbb{Q} of all rational numbers other than 1 is an Abelian group with respect to the binary composition a * b = a + b ab.
 - (c) State and prove Lagrange's theorem.
 - (d) Express the following permutation as a product of transpositions and hence determine whether it is odd or even:

$$\begin{pmatrix}1&2&3&4\\4&3&2&1\end{pmatrix}$$

- 6. (a) Prove that intersection of two subrings of a ring $(R, +, \cdot)$ is a subring of R.
 - (b) Show that in a group G, the equations $a \cdot x = b$ and $y \cdot a = b$ have unique solutions for all $a, b \in G$.

- (c) Compute 4¹²² (mod 11) and 2²⁰²² (mod 21) using Euler's theorem.
- (d) Let R be a ring. The center of R is the set $\{x \in R : ax = xa \ \forall \ a \in R\}$. Prove that the center of a ring is a subring.