[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 1150

Unique Paper Code : 32351401\_LOCF

Name of the Paper : BMATH-408 Partial Differential

Equation

Name of the Course : CBCS B.Sc. (H)

Mathematics

Semester : IV

Duration: 3 Hours Maximum Marks: 75

## Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any four questions.
- 3. All questions carry equal marks.

## **SECTION - I**

Attempt any **two** parts out of the following.

Marks of each part are indicated.

1. (a) Define the following with one example each: (6)

- (i) Quasi-linear first order partial differential equation (PDE).
- (ii) Semi-linear first order PDE.
- (iii) Linear first order PDE.

State whether the following first order PDE is quasi-linear, semi-linear, linear or non-linear:

(6)

(6)

$$(xy^2)u_x - (yx^2)u_y = u^2(x^2 - y^2)$$

Justify.

(b) Solve the Cauchy problem

$$uu_x + u_y = 1$$

such that  $u(s, 0) = 0, x(s, 0) = 2s^2$ ,

$$y(s,0) = 2s, s > 0.$$

(c) Obtain the solution of the pde

$$x(y^2+u)u_x - y(x^2+u)u_y = (x^2-y^2)u$$
,

with the data u(x,y) = 1 on x + y = 0.

(d) Apply  $\sqrt{u} = v$  and v(x, y) = f(x) + g(y) to solve

$$x^4 u_x^2 + y^2 u_y^2 = 4u \ . ag{6}$$

- 2. Attempt any two parts out of the following:
  - (a) Apply the method of separation of variables u(x,y) = f(x)g(y) to solve

$$y^2 u_x^2 + x^2 u_y^2 = (xyu)^2$$

such that 
$$u(x,0) = 3e^{\frac{x^2}{4}}$$
. (6.5)

(b) Find the solution of the equation (6.5)

$$yu_x - 2xyu_y = 2xu$$

with the condition  $u(0,y) = y^3$ .

(c) Reduce into canonical form and solve for the general solution (6.5)

$$u_x - yu_v - u = 1.$$

(d) Derive the one-dimensional heat equation:

$$u_t = \kappa u_{xx}$$

where  $\kappa$  is a constant. (6.5)

P.T.O.

## SECTION - II

- 3. Attempt any two parts out of the following:
  - (a) Find the characteristics and reduce the equation  $u_{xx} (\sec h^4 x)u_{yy} = 0 \text{ into canonical form.}$  (6)
  - (b) Find the characteristics and reduce the equation  $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} + xy u_x + y^2 u_y = 0$  into canonical form. (6)
  - (c) Transform the equation  $u_{xx} u_{yy} + 3u_x 2u_y + u = 0$ to the form  $v_{\xi\eta} = cv$ , c=constant, by introducing the new variable  $v = ue^{-(a\zeta + b\eta)}$ , where a and b are undetermined coefficients. (6)
  - (d) Use the polar co-ordinates r and  $\theta$  ( x=r cos $\theta$ , y=r sin $\theta$ ) to transform the Laplace equation  $u_{xx} + u_{yy} = 0$  into polar form. (6)
- 4. Attempt any two parts out of the following:
  - (a) Find the D'Alembert solution of the Cauchy problem for one dimensional wave equation given by

$$u_{tt} - c^{2}u_{xx} = 0, x \in R, t > 0$$

$$u(x,0) = f(x), x \in R,$$

$$u_{tt}(x,0) = g(x), x \in R.$$
(6.5)

(b) Solve (6.5)

$$y^{3}u_{xx} - yu_{yy} + u_{y} = 0,$$

$$u(x, y) = f(x) \text{ on } x + \frac{y^{2}}{2} = 4 \text{ for } 2 \le x \le 4,$$

$$u(x, y) = g(x) \text{ on } x - \frac{y^{2}}{2} = 0 \text{ for } 0 \le x \le 2,$$

$$with f(2) = g(2).$$

(c) Determine the solution of initial boundary value problem

$$u_{tt} = 16u_{xx}, \quad 0 < x < \infty, t > 0$$

$$u(x,0) = \sin x, \quad 0 \le x < \infty,$$

$$u_{t}(x,0) = x^{2}, \quad 0 \le x < \infty,$$

$$u(0,t) = 0, \quad t \ge 0.$$
(6.5)

(d) Determine the solution of initial boundary value problem (6.5)

$$u_{tt} = 9u_{xx}, \quad 0 < x, \infty, t > 0,$$
  
 $u(x, 0) = 0, \quad 0 \le x < \infty,$   
 $u_{tt}(x, 0) = x^{3}, \quad 0 \le x < \infty$   
 $u_{tt}(0, t) = 0, \quad t \ge 0.$ 

## **SECTION - III**

- 5. Attempt any two parts out of the following:
  - (a) Determine the solution of the initial boundary-value problem by method of separation of variables

$$u_{tt} = c^{2}u_{xx}, \quad 0 < x < l, \ t > 0$$

$$u(x,0) = \begin{cases} h \ x / a, & 0 \le x \le a \\ h \ (l-x) / (l-a), & a \le x \le l \end{cases},$$

$$u_{t}(x,0) = 0, \quad 0 \le x \le l,$$

$$u(0,t) = 0 = u(l,t) = 0 \quad t \ge 0$$

(6.5)

(b) Obtain the solution of IBVP (6.5)

$$u_{t} = u_{xx},$$
  $0 < x < 2, t > 0,$   
 $u(x,0) = x, 0 \le x \le 2,$   
 $u(0,t) = 0,$   $u_{x}(2,t) = 1,$   $t \ge 0,$ 

(c) Determine the solution of the initial-value

$$u_{tt} = c^{2}u_{xx} + x^{2},$$

$$u(x,0) = x,$$

$$u_{t}(x,0) = 0,$$

$$u_{t}(x,0) = 0,$$

$$u(0,t) = 0,$$

$$u(1,t) = 0,$$

$$(6.5)$$

$$0 \le x \le 1,$$

(d) Determine the solution of the initial-value problem (6.5)

$$u_{t} = ku_{xx}, \quad 0 < x < 1, t > 0,$$
  
 $u(x,0) = x(1-x), \quad 0 \le x \le 1$   
 $u(0,t) = t, \quad u(1,t) = \sin t, \quad t > 0.$ 

- 6. Attempt any two parts out of the following:
  - (a) Determine the solution of the initial boundary-value problem by method of separation of variables (6)

$$u_{tt} = c^{2}u_{xx}, 0 < x < a, t > 0$$

$$u(x,0) = 0, 0 \le x \le a,$$

$$u_{t}(x,0) = \begin{cases} \frac{v_{0}}{a}x, & 0 \le x \le a \\ v_{0}(l-x)/(l-a), & a \le x \le l \end{cases}$$

$$u(0,t) = 0 = u(a,t) = 0,$$

$$t \ge 0.$$
P.T.O.

- (b) Find the temperature distribution in a rod of length 1. The faces are insulated, and the initial temperature distribution is given by x (1 x).
- (c) Establish the validity of the formal solution of the initial boundary value problem (6)

$$u_{t} = ku_{xx}, \quad 0 \le x \le l, \ t > 0,$$
  
 $u(x,0) = f(x), \qquad 0 \le x \le l,$   
 $u(0,t) = 0, \qquad t > 0,$   
 $u_{x}(1,t) = 0, \qquad t > 0.$ 

(d) Prove the uniqueness of the solution of the problem: (6)

$$u_{tt} = c^{2}u_{xx}, \quad 0 < x < l, t > 0,$$
  
 $u(x,0) = f(x), 0 \le x \le l,$   
 $u_{t}(x,0) = g(x), 0 \le x \le l,$   
 $u(0,t) = u(0,t) = 0, t > 0.$