[This question paper contains 6 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 1143

Unique Paper Code : 2352201102

Name of the Paper : DSC: Elements of Discrete

Mathematics

Name of the Course : B.A. (Prog.)

Semester : I

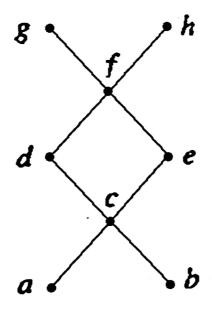
Duration: 3 Hours Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts from each question.
- 3. All questions are compulsory. Marks are indicated.
- 1. (a) Determine the following:
 - (i) Compute the truth table of the statement $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$.

- (ii) If $p \Rightarrow q$ is false, then determine the truth value of $(\sim (p \land q)) \Rightarrow q$. Explain your answer. (7.5)
- (b) Let $A = \mathbb{Z}^+$ (the set of positive integers). Define the following relation R on A:

a R b if and only if $|a-b| \le 2$.


Determine whether the relation R on A is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. Is R an equivalence relation on A? (7.5)

- (c) Prove by mathematical induction that 3 divides (n^3-n) for every positive integer n. (7.5)
- 2. (a) For any positive integer n, let D_n denote the set of all positive integers which are divisors of n. Draw the Hasse diagram for D_{12} and D_{15} with the partial order \leq of divisibility defined as a \leq b if and only if a divides b. (7.5)
 - (b) Consider $A = \{1,2,3,5,6,10,15,30\}$ and partial order \leq of divisibility on the set A defined as $a \leq b$ if and only if a divides b. Let B = P(S)

1143

where $S = \{e,f,g\}$ be the poset with the partial order \leq' defined as, $U \leq' V$ if and only if $U \subseteq V$ $\forall U, V \in B$. Show that (A, \leq) and (B, \leq') are isomorphic posets. (7.5)

(c) Find all the maximal and minimal elements, all the lower and upper bounds along with greatest lower and least upper bound of the subset B = {c,d,e} in the following Hasse diagiam. (7.5)

3. (a) Let (L, \land, \lor) be an algebraic lattice. Define $l \le m \Leftrightarrow l \land m = l$. Show that (L, \le) is a lattice ordered set. (7.5)

(b) If f is a homomorphism from a lattice L to another lattice M. Show that the homomorphic image of L,f(L) = {f(l): l ∈ L}, is a sublattice of M.

(7.5)

(c) Define a sublattice of a lattice. Show' that every non empty subset of a chain is a sublattice.

(7.5)

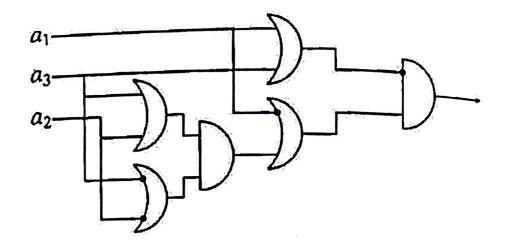
- 4. (a) Define a distributive lattice. Show that every chain is a distributive lattice. (7.5)
 - (b) Let (L_1, \leq_1) and (L_2, \leq_2) be two ordered lattices. Define a relation \leq on their Cartesian product $L = L_1 \times L_2$ by $(a_1, a_2) \leq (b_1, b_2)$ if and only if $a_1 \leq_1 b_1$ in L_1 and $a_2 \leq_2 b_2$ in L_2 . Prove that (L, \leq) is also a lattice. (7.5)
 - (c) Justify with an example that complement of an element in a non-distributive lattice need not be unique. (7.5)
- 5. (a) Construct circuits by using inverters, AND gates and OR gates to produce the output

$$(x+y+z)\overline{x}\,\overline{y}\,\overline{z} \tag{7.5}$$

(b) What is Disjunctive normal form and Conjunctive normal form? Find the DN form and CN form of the following Boolean function.

$$f(x, y, z) = xy + xz + \overline{y}z \tag{7.5}$$

(c) What is Karnaugh map? Use Karnaugh map diagram to find a minimal form of the function


$$\overline{x}yzw + x\overline{y}z\overline{w} + \overline{x}\overline{y}z\overline{w} + xy\overline{z}\overline{w} + x\overline{y}\overline{z}\overline{w}$$
 (7.5)

- 6. (a) Let $f(x,y,z) = x \overline{y}z + xyz + \overline{y} \overline{z}$. Find the implicants, prime implicants and essential prime implicants of f(x,y,z) (7.5)
 - (b) Draw the switching circuit diagram for the following:-

(i)
$$p = x_1(x_2(x_3 + x_4) + x_3(x_5 + x_6))$$

(ii)
$$p = x_1(x_2'(x_6 + x_3(x_4 + x_5')) + x_7(x_3 + x_6)x_8')$$
(7.5)

(c) What is subjunction gate, NOR gate and NAND gate? Determine the Boolean polynomial of the circuit.

(7.5)

(300)