[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 2153

H

Unique Paper Code : 62357604

Name of the Paper : Differential Equations

Name of the Course : B.A. (Prog.)

Semester : VI

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.
- 1. (i) Solve the differential equation

$$(2x \cos y + 3x^2y) dx + (x^3 - x^2 \sin y - y) dy = 0$$

(6)

(ii) Solve the differential equation

$$y^2 dx + (3xy - 1)dy = 0 (6)$$

(iii) Solve the following differential equation

$$p^2 x (x-2) + p (2y-2xy-x+2) + y^2 + y = 0$$
(6)

2. (i) Find the general solution of

$$y''' - 6y' + 25y = 0 (6)$$

(ii) Given that e^{-x} , e^{3x} and e^{4x} are all solution of

$$y'''' - 6y'' + 5y' + 12y = 0$$

Show that they are linearly independent on the interval $-\infty < x < \infty$. (6)

(iii) Solve the equation

$$x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} + 2y = 0$$
 (6)

 (i) Find the general solution of the given differential equation using variation of parameter method.

$$y'' + y = \tan x \tag{6.5}$$

(ii) Solve

$$\frac{dx}{dt} - 7x + y = 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} - 2x - 5y = 0 \tag{6.5}$$

(iii) Solve

$$\frac{-\mathrm{d}x}{x(x+y)} = \frac{\mathrm{d}y}{y(x+y)} = \frac{\mathrm{d}x}{(x-y)(2x+2y+x)} \quad (6.5)$$

4. (i) Eliminate the arbitrary function f and form the PDE:

$$g = e^{ax+by} f(ax = by)$$
 (6)

(ii) Find the general solution of the equation

$$2(xp - yq) = y^2 - x^2 \tag{6}$$

(iii) Find the complete integral of

$$(p_3 + q_3)y = dx \tag{6}$$

5, (i) Find the partial differential equation of all apheres of radius a having their centers in the yz-plane. (6.5)

(ii) Find the general solution of the equation

$$(y-z)p + (z-x)q = x-y$$
 (6.5)

- (iii) Find the complete integral of px + qy = pq.

 (6.5)
- 6. (i) Find the general solution of the equation

$$(y + zx)p - (x + yz)q = x^2 - y^2$$
 (6.5)

(ii) Find a complete integral of

$$(p+q)(px+qy) = 1$$
 (6.5)

(iii) Classify the Partial Differential Equation:

$$xu_{xx} + tu_{xt}u_{tt} = 0 ag{6.5}$$