[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 2245

H

Unique Paper Code

: 62367602

Name of the Paper

: Integer Programming and

Theory of Games

Name of the Course

: **B.A.** (**Prog.**)

Semester

: VI

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any five questions in all.
- 3. All questions carry equal marks.
- 1. (a) What is Integer programming problem (IPP)?

 Differentiate between two types of IPP. (5)

(b) What are the real-life applications of integer linear programming problems? Use the complete enumeration graphical method to solve the following integer linear programming problems:

$$Max z = x_1 + x_2$$

Subject to

$$2x_1 + 5x_2 \le 16$$

$$6x_1 + 5x_2 \le 30$$

 x_1 and x_2 are non – negative integers (10)

- (a) Explain the decision under uncertainty and decision under risk. Name any two methods for dealing with decisions under uncertainty.
 - (b) Use the following cost pay-off matrix to find:

No. of	Probability	No. of Spares, Ai					
failures E _i		0	1	2	3	4	5
0	0.1	0	400	800	1200	1600	2000
11	0.2	1800	400	800	1200	1600	2000
2	0.3	3600	2200	800	1200	1600	2000
3	0.2	5400	4000	2600	1200	1600	2000
4	0.1	7200	5800	4400	3000	1600	2000
5	0.1	9000	7600	6200	4800	3400	2000

- (i) The optimal number of units of the spare part on the basis of the minimax principle, Laplace principle, and Hurwicz (take $\alpha = 0.5$)
- (ii) The regret table, and the optimal choice on the basis of the least expected regret criterion and

3. (a) Explain the terms: Saddle point, Zero-sum game, and Payoff matrix. (6)

(b) Use graphical method to solve the game with the following pay-off: (9)

 Player B

 Strategy
 b1
 b2
 b3

 a1
 6
 4
 3

 a2
 2
 4
 8

4. (a) For any two-person zero-sum game with $(a_{ij})_{m\times n}$ as its payoff, show that the maximin value, \underline{v} of the matrix will always be less or equal to the minimax value, \bar{v} of the matrix, i.e. \max_i , $\min_j(a_{ij}) \le \min_j \max_i(a_{ij})$. (5)

(b) Use simplex method to solve the following game problem.

$$\begin{pmatrix} 6 & 7 \\ 4 & 5 \end{pmatrix} \tag{10}$$

- 5. (a) Give the mathematical formulation of a capital budgeting problem. (5)
 - (b) Use the branch and bound method to find an integer solution to the following problem:

$$Max z = 7x_1 + 9x_2$$

Subject to

$$-x_1 + 3x_2 \le 6$$

$$7x_1 + x_2 \le 35$$

$$x_2 \le 7$$

x₁ and x₂ are non-negative integers

(10)

- 6. (a) Explain Gomory's cutting plane method for solving a mixed-integer linear programming problem. (5)
 - (b) Use the cutting plane method to find the solution to the following problem:

$$Max z = 5x + 2y$$

Subject to

$$2x + 2y \le 5$$

$$3x + y \le 11$$

 $x, y \ge 0$; and are integers.

The optimum LPP solution is given in the table below:

Y ₂ X		γ	S ₁	s ₂	b
AB V	0	1	0.75	-0.5	1.25
X	1	0	-	0.5	3.25
Α .			0.25		
Z	0	0 ,	0.25	1.5	18.75

(10)

7. (a) Implicit enumeration method to find the binary integer solution to the following problem: (7)

$$Max z = 25x_1 + 16x_2 + 22x_3$$

Subject to

$$4x_1 + x_2 + 5x_3 \le 15$$

$$x_1 + 5x_2 + 6x_3 \le 12$$

$$x_1 + x_2 + x_3 \le 10$$

$$x_j = 0 \text{ or } 1 \ \forall \ j = 1, 2, 3$$

(b) Use principle of dominance to solve the following game problem: (8)

1	3	2	7	4		
3	4	1	5	6		
6	5	7	6	5		
2	0	3	6	1		