[This question paper contains 8 printed pages.]

Your Roll No.....

H

Sr. No. of Question Paper: 4955

Unique Paper Code : 2342571201

Name of the Paper : Data Structures

Name of the Course : B.Sc. (P)/B.A. (P)

Year of Admission : 2022 & onwards

Semester : II

Duration: 3 Hours

Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Section A is compulsory.
- 3. Attempt any four questions from Section B.
- 4. Parts of the question must be answered together.

SECTION A

1. (a) Can you perform a binary search on the following list:

2, 4, 1, 9, 3, 7

If not give reasons and modify this list so that binary search can be performed.

- (b) State true or false for the following statements and justify your answer: (3)-
 - (i) Nodes of a binary tree may have 0 or 1 or 2 children.
 - (ii) Stacks use the FIFO access method.
 - (iii) A doubly linked list uses more memory than a singly linked list.
- (c) Considering root of the Binary tree at level 1, what is the maximum number of nodes: (3)
 - (i) In a Binary tree of height 4
 - (ii) At level 3
 - (iii) At lowest level

- (d) What is a recursive function? Under which situations is it desirable to use a recursive function? (3)
- (e) Why overflow error does not occur in a linked list?
- (f) What is the difference between one-dimensional and two-dimensional array? Give one example with (3) code declaration of each.
- (g) Write the steps when binary search is applied on (3) the following list to find 16:

2 4 6 8 10 12 14

- (h) List any three primitive operations considered in (3) complexity analysis of algorithms.
- (i) Apply insertion sort for sorting the following data in ascending order. Show the outcome after each (3)pass:

9 7 11 85

SECTION B

- (a) Write a program in C++ to implement multiplication of two matrices of order nXn taking input from the user. Show the output row-wise.
 - (b) Consider the following sequence of operations performed on an initially empty doubly-linked list, where addtohead(), addtotail() and deletef romhead() are user defined functions to add a node to the front, add a node to the tail and delete a node from the front respectively:
 - (i) addtohead (25)
 - (ii) addtohead (28)
 - (iii) addtotail (23)
 - (iv) addtotail (20)
 - (v) deletef romhead ()

Show the pointers head, tail, content of the list, and links between the nodes after each operation. (5)

(c) Create a binary tree whose following traversals are given: (5)

Inorder: x y z a p q r

Preorder: a y x z q p r

- 3. (a) Write a function in C++ to count the number of elements in a linked list. (5)
 - (b) Create a Binary Search Tree using the following values:

12, 45, 13, 67, 10, 34.

Using the above tree perform the following operations:

- (i) Delete 12
- (ii) Insert 8

Show the tree after each operation.

(c) What will be the output after performing the following operations on an initially 5 empty stack of size 5. Show the contents of the stack after each operation:

4955

push(10)
push(20)
pop()
pop()
isempty()
(5)

4. (a) Traverse the following binary tree in preorder and inorder: (5)

- (b) Is the above tree in Q4(a) (5)
 - (i) A complete binary tree
 - (ii) Find the siblings of node 8
 - (iii) What is the height of the above binary tree
 - (iv) What is the degree of node 4
 - (v) What is the value of the root node

- (c) Give the Depth First Traversal of the tree in Q4a. (5)
- 5. (a) Write a recursive function in C++ to reverse an array of integers. Array size and elements must be taken as input from the user. (5)
 - (b) What are the properties of stack data structure? Show how stacks are used to add two numbers a and b. (5)
 - (c) Differentiate between a queue and a priority queue. Give one application of a priority queue. (5)
- 6. (a) What is a deque? How is it different from a queue?

 List all the operations that can be performed on a deque.

 (5)
 - (b) What are the limitations of a queue when implemented as a linear array? Give an example to illustrate. How can this error be avoided?

(5)

- (c) State true or false giving reasons to justify your answer:
 - (i) Elements of an array can be of different data types.

- (ii) The time complexity of Insertion sort is O(nlogn).
- (iii) An algorithm of complexity $O(n\log n)$ is faster than one with complexity $O(n^2)$.
- (iv) Master method can solve all recurrence relation.
- (v) A recursive method is always more efficient than an iterative method. (5)
- 7. (a) Write a program in C++ to implement insertion sort on an array of n elements. Take n and array elements as input from the user. (5)
 - (b) What is a recurrence relation? What is its significance in complexity analysis? Use recurrence tree method to solve the following recurrence relation:

$$T(n) = T(n-1) + n$$
 (5)

(c) Use master's method to solve following recurrence relation:

$$T(n) = 3T(n/4) + n\log n$$
 (5)