[This question paper contains 4 printed pages.]

Your	Roll	No	 •

Sr. No. of Question Paper: 4024

H

Unique Paper Code : 2362572401

Name of the Paper : NEP-UGCF: Statistical

Inference

Name of the Course : B.A. (Program)

Semester : IV

Duration: 3 Hours Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any five questions.
- 3. Each questions carry equal marks.

1. (i) Consistent estimator. (3)

(ii) Degree of freedom. (3)

(iii)	One	tailed	and	two	tailed	test.		(2)
-------	-----	--------	-----	-----	--------	-------	--	-----

(v) Level of significance and Power of the test.

(2)

- 2. (a) Explain various types of sampling. (6)
 - (b) Explain the concept of efficient and sufficient estimators. Also, find the sufficient statistic for the population mean (μ) and variance (σ^2) in case of normal population $N(\mu, \sigma^2)$. (12)
- 3. (a) Explain minimum variance biased estimator.

(6)

(b) Let $X_1, X_2,..., X_n$ be a random sample from a distribution with pdf

$$f(x,\theta) = \frac{1}{\theta}e^{\frac{x}{\theta}}, \quad x > 0, \ \theta > 0$$

Find the maximum likelihood estimator for θ . Is the estimator unbiased? (12)

- 4. (a) Discuss the concept of interval estimation and provide suitable illustration. (6)
 - (b) For the following distribution

$$f(x,\theta) = \frac{2}{\theta^2}(\theta - x), \quad 0 \le x \le \theta,$$

Obtain $100(1-\alpha)\%$ confidence interval for θ . (12)

- 5. (a) What is simple and composite statistical hypothesis? Give example. Define Null and alternative hypothesis. (6)
 - (b) Explain the concept of Type-I and Type-II Errors.

 Show that the most powerful test is necessarily unbiased. (12)
- 6. (a) Define "Likelihood ratio test". Under what circumstances would you recommend this test.

(6)

(a) Obtain $100(1-\alpha)\%$ confidence interval for the binomial distribution, $\alpha = 0.05$. (12)

applied the great to

moderni i sens di la senti i seggi i seggi i sensi i di prote en s