[This question paper contains 4 printed pages.]

Your Roll No

E

Sr. No. of Question Paper

: 4960

Unique Paper Code

62357604

Name of the Paper

Differential Equations

Name of the Course

B.A. (Prog.)

Semester

V

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.

Q.1

(i) Solve the differential equation

$$(x^2 - 3y^2) dx + 2xy dy = 0$$

6

(ii) Solve the differential equation

$$\frac{dy}{dx} + y = x y^3$$

6

(iii) Solve the following differential equation

$$e^{4x}(p-1)+e^{2y}p^2=0$$

by reducing it to Clairaut form using the transformation

$$e^{2x} = u \text{ and } e^{2y} = v,$$

Q. 2

(i) Find the general solution of

$$y''' - 5y'' + 7y' - 3y = 0$$

6

(ii) Given that e^{-x} , e^{3x} and e^{4x} are all solution of

$$y''' - 6y'' + 5y' + 12y = 0$$

Show that they are linearly independent on the interval $-\infty < x < \infty$ and write the general solution.

6

(iii) Solve the equation

$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$

6

Q.3

(i)

Find the general solution of the given differential equation using variation of parameter method.

$$y'' + y = \tan x$$

6.5

(ii) Solve

$$\frac{dx}{dt} + 7x + y = 0$$

$$\frac{dy}{dt} + 2x + 5y = 0$$

6.5

(iii) Solve

$$\frac{dx}{y^3 x - 2x^4} = \frac{dy}{2y^4 - x^3 y} = \frac{dz}{9z(x^3 - y^3)}$$

6.5

Q.4

(i) Form the partial differential equation of the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

6

(ii) Find the general solution of the equation

$$2(xp - yq) = y^2 - x^2$$

6

(iii) Find the complete integral of z = pq

6

Q.5

(i) Find the partial differential equation of all spheres having their centers in the xy-plane.

6.5

(ii) Find the general solution of the equation

$$x^2p + y^2q = (x+y)z$$

6.5

(iii) Find the complete integral of px + qy = pq

6.5

Q.6

(i) Find the general solution of the equation

$$y^2 p - xyq = x(z - 2y)$$

6.5

P.T.O.

4

(ii) Find a complete integral of $p = (z + qy)^2$

6.5

(iii) Reduce the equation $r - x^2t = 0$ to the canonical form.

65

(1200)