[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 918

G

Unique Paper Code : 2362571101

Name of the Paper : Introduction to Operational

Research and Linear

Programming Problem

Name of the Course : B.A. (Program)

Semester : I

Duration: 3 Hours Maximum Marks: 90

## Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any five questions.
- 3. All questions carry equal marks.

(a) What is linear programming problem? Discuss
the application of linear programming problem.

(8)

(b) A home decorator manufactures two types of lamps say P and Q. Both lamps go through two technicians first a cutter, second a finisher. Lamp P requires 2 hours of the cutter's time and 1 hours of the finisher's time. Lamp Q requires 1 hours of cutter's and 2 hours of finisher's time. The cutter has 104 hours and finisher 76 hours of available time each month. Profit on one lamp P is Rs. 6 and on one lamp Q is Rs. 11. Formulate the linear programming problem and determine using graphical method how many of each type of lamps should be manufacturer to obtain the best (10)return.

- (a) Define the convex set. Show that the intersection of any finite numbers of convex sets is a convex set.
  - (b) Do all possible basic solutions of the following system of equation exist? Find all existing basic solutions.

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 7$$

$$2x_1 + x_2 + x_3 + 2x_4 = 3$$
(10)

- 3. (a) Define the following terms:
  - (i) Open half space and closed half space with examples

- (ii) Basic feasible solution
- (iii) Slack and surplus variables
- (iv) Unrestricted variable (8)
- (b) Solve the following LPP using simplex method:

Maximize 
$$Z = 2x_1 + 5x_2 + 7x_3$$

Subject to 
$$3x_1 + 2x_2 + 4x_3 \le 100$$

$$x_1 + 4x_2 + 2x_3 \le 100$$

$$x_1 + x_2 + 3x_3 \le 100$$

$$x_1, x_2, x_3 \ge 0.$$
 (10)

- 4. (a) Define artificial variable technique. Write a short note on two phase method. (8)
  - (b) Solve the following LPP using Charne's-M method

Maximize 
$$Z = x_1 + 2x_2 + 3x_3 - x_4$$

Subject to 
$$x_1 + 2x_2 + 3x_3 = 15$$

$$2x_1 + x_2 + 5x_3 = 20$$

$$x_1 + 2x_2 + x_3 + x_4 = 10$$

$$x_1, x_2, x_3 \ge 0.$$
 (10)

5. (a) Solve the following LPP

Maximize  $Z = 4x_1 + 6x_2$ 

## Subject to the constraints

$$N_1 = 2N_2 \ge -4$$

$$x_1$$
 and  $x_2$  are unrestricted (3)

(b) Use two phase simplex method to solve the following problem:

Maximize 
$$Z = 4x_1 + 8x_2 + 3x_3$$

Subject to the constraints

$$x_1 + x_2 \ge 2$$

$$2x_1 + x_3 \ge 5$$

$$x_1, x_2, x_3 \ge 0$$
 (10)

- 6. (a) Explain the term degeneracy in the context of LPP. Lxplain the perturbation technique to resolve the degeneracy in LPP. (8)
  - (b) Solve the given LPP:

Maximize 
$$Z = 2x_1 + 3x_2 + 10x_3$$

Subject to 
$$x_1 - 2x_3 = 0$$

$$x_2 + x_3 = 1$$

$$x_1, x_2, x_3 \ge 0$$
 (10)

7. (a) What is difference between simplex method and revised simplex method? (8)

(b) Use revised simplex method to solve the LPP:

Maximize  $Z = x_1 + 2x_2$ 

Subject to  $x_1 + x_2 \le 3$ 

 $x_1 + 2x_2 \le 5$ 

 $3x_1 + x_2 \le 6$ 

 $x_1, x_2 \ge 0 \tag{10}$ 

1