[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 6339

Unique Paper Code : 62354343

Name of the Paper : Analytic Geometry and

Applied Algebra

Name of the Course

: B.A. (Prog.) Mathematics

(CBCS)

Semester

: III

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates to though and hard tolk

- Write your Roll No. on the top immediately on receipt 1. of this question paper.
- This question paper has six questions in all. 2.
- Attempt any two parts from each question. 3.
- All questions are compulsory, 4.

1. (a) Identify and sketch the curve $x = y^2 - 4y + 2.$ (6.5)

(b) Sketch the curve represented by the equation $4x^2 + 9y^2 = 36$,

and also label the foci, vertices and the ends of minor axis. (6.5)

- (b) Describe the graph of the equation $x^2 4y^2 + 2x + 8y 7 = 0.$ (6.5)
- (a) Find an equation for the parabola whose vertex is at (1, 1) and directrix y = -2. Also sketch the graph.
 - (b) Find an equation for the ellipse with foci $(0, \pm 2)$ and major axis with end points $(0, \pm 4)$. Also state the reflection property of the ellipse. (6)
 - (c) Find an equation of the hyperbola with vertices $(\pm 2, 0)$ and foci $(\pm 3, 0)$. (6)
- 3. (a) Rotate the coordinate axis to remove the xy-term of the curve

$$x^{2} + 2\sqrt{3xy} + 3y^{2} + 2\sqrt{3}x - 2y = 0$$
.
Then name the conic. (6.5)

- (b) Find the distance from the point (-5, 2, -3) to the yz-plane. (6.5)
- (c) Describe the surface whose equation is given by $x^2 + y^2 + z^2 + 2x 2y + 2z + 3 = 0.$ (6.5)
- 4. (a) Express the vector $\vec{\mathbf{v}}$ as the sum of a vector parallel to $\vec{\mathbf{b}}$ and a vector orthogonal to $\vec{\mathbf{b}}$ where $\vec{\mathbf{v}} = -2\hat{\mathbf{i}} + \hat{\mathbf{j}} + 6\hat{\mathbf{k}}, \ \vec{\mathbf{b}} = -2\hat{\mathbf{j}} + \hat{\mathbf{k}}. \tag{6}$
 - (b) Find two, unit vectors that are orthogonal to both $\vec{u} = -7\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{v} = 2\hat{i} + 4\hat{k}$. (6)
 - (c) Use a scalar triple product to determine whether the vectors $\vec{u} = \hat{i} 2\hat{j} + \hat{k}$, $\vec{v} = 3\hat{i} 2\hat{k}$ and $\vec{w} = 5\hat{i} 4\hat{j}$ lie in the same plane. (6)
- 5. (a) Find the parametric equation of the line L passing through the points (2, 4, -1), and (5, 0, 7). Where does the line intersect the xy-plane? (6.5)
 - (b) Find the distance between the point (2, 3, 6) and the plane 2x + y + z = 1. (6.5)

P.T.O.

(c) Show that the lines

L₁:
$$x = 1 + 7t$$
, $y = 3 + t$, $z = 5 - 3t$;
L₂: $x = 4 - t$, $y = 6$, $z = 7 + 2t$,

are skew. Also find the distance between them.
(6.5)

- 6. (a) Define a Latin square. Give an example of a Latin square of order 6. (6)
 - (b) Find a minimal edge cover for the following graph.

 Give a detailed logical analysis. (6)

(c) Three pitchers of sizes 10 litres, 4 litres and 7 litres are given. If initially 10 litres pitcher is full and the other two empty, find a minimal sequence of pouring so as to have exactly 2 litres of water in either the 7 litres or the 4 litres pitcher.

(6)