Your Roll No.....

Sr. No. of Question Paper: 1441

F

Unique Paper Code

: 2352571201

Name of the Paper

: Elementary Linear Algebra

Name of the Course

: B.A. (Prog.)

Semester

: II - DSC

Duration: 3 Hours

Maximum Marks: 90

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt 1. of this question paper.
- Attempt all question by selecting two parts from each 2. question.
- All questions carry equal marks. 3.
- Use of Calculator not allowed. 4.

1. (a) If x and y are vectors in \mathbb{R}^n , then prove that $||x+y|| \le ||x|| + ||y||.$

Also verify it for the vectors x = [-1, 4, 2, 0, -3]and y = [2, 1, -4, -1, 0] in \mathbb{R}^5 . (5.5+2)

(b) Prove that for vectors x and y in Rⁿ,

(i)
$$x \cdot y = \frac{1}{4}(||x + y||^2 - ||x - y||^2)$$

(ii) If
$$(x + y) \cdot (x - y) = 0$$
, then $||x|| = ||y||$. (4+3.5)

(c) Solve the systems $AX = B_1$ and $AX = B_2$ simultaneously, where

$$A = \begin{bmatrix} 9 & 2 & 2 \\ 3 & 2 & 4 \\ 27 & 12 & 22 \end{bmatrix}, \quad B_1 = \begin{bmatrix} -6 \\ 0 \\ 12 \end{bmatrix}, \text{ and } \quad B_2 = \begin{bmatrix} -12 \\ -3 \\ 8 \end{bmatrix}$$

2. (a) Find the reduced row echelon form of the following matrix:

$$A = \begin{bmatrix} 2 & -5 & -20 \\ 0 & 2 & 7 \\ 1 & -5 & -19 \end{bmatrix}$$
 (7.5)

- (b) Express the vector x = [2, -1, 4] as a linear combination of vectors $v_1 = [3, 6, 2]$ and $v_2 = [2, 10, -4]$, if possible. (7.5)
- (c) Define the rank of a matrix and determine it for the following matrix:

$$B = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \\ -1 & -3 & 1 \end{bmatrix}$$
 (1.5+6)

3. (a) Check if the following matrix is diagonalizable or not:

$$\begin{bmatrix} 3 & 4 & 12 \\ 4 & -12 & 3 \\ 12 & 3 & -4 \end{bmatrix}$$
 (7.5)

- (b) Show that the set of all polynomials P(x) forms a vector space under usual polynomial addition and scalar multiplication. (7.5)
- (c) Give an example of a finite dimensional vector space. Check if the following are a vector space or not:
 - (i) R^2 with the addition $[x, y] \oplus [w, z] =$ [x+w+1, y+z-1] and scalar multiplication $a \otimes [x, y] = [ax+a-1, ay-2].$

5

(ii) set of all real valued functions $f: R \to R$

such that $f\left(\frac{1}{2}\right)=1$, under usual function

addition and scalar multiplication.

(1.5+3+3)

- 4. (a) Definesubspace of a vector space. Further show that intersection of two subspaces of a vector space V is a subspace of V. (1.5+6)
 - (b) Define a linearly independent set. Check if $S = \{(1,-1,0,2), (0,-2,1,0), (2,0,-1,1)\}$ is linearly independent set in R⁴ or not.

(1.5+6)

(c) Define an infinite dimensional and finite dimensional vector space.

Consider the set of all real polynomials denoted by P(x), and the set of all real polynomials of degree at most n denoted by $P_n(x)$. Describe a basis of P(x) and $P_n(x)$ and mention if these are finite dimensional or infinite dimensional.

(2+4+1.5)

(a) Show that the mapping L: M_{nn} → M_{nn}, defined as L(A) = A + A^T is a linear operator, where M_{nn} is set of n × n matrices and A^T denotes the transpose of the matrix A. Find the Kernel of L.

(3+4.5)

(b) Let L: $R^2 o R^3$ be a linear transformation defined as $L\{[a,b]\} = [a-b, a, 2a+b]$. Find the matrix of linear transformation A_{BC} of L, with respect to the basis $B = \{[1,2], [1,0]\}$ and $C = \{[1,1,0], [0,1,1], [1,0,1]\}$. (7.5)

- (c) Let L: V → W, be a linear transformation, then define Ker(L), Range(L). Further show that Ker(L) is a subspace of V and Range(L) is a subspace of W. (1.5+1.5+2.5+2)
- 6. (a) For the linear transformation L: $R^3 \rightarrow R^3$ defined as

$$L \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 & -1 & 5 \\ -2 & 3 & -13 \\ 3 & -3 & 15 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Find Ker(L) and Range(L). (4+3.5)

(b) Let L: V → W be a one-to-one linear transformation. Show that if T is a linearly independent subset of V, then L(T) is a linearly independent subset of W. (7.5) (c) For the linear transformation L: $\mathbb{R}^2 \to \mathbb{R}^2$, defined as:

$$L\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

Find L⁻¹, if it exists.

(7.5)